Q: A Multi-lingual
Interprocess Communications System
for
Software Environment Implementation

Mark Maybee
Leon J. Osterweil?
Stephen D. Sykes?

CU-CS-476-90 June 1990

Department of Computer Science
Campus Box 430
University of Colorado
Boulder, CO 80309-0430

This research was supported by DARPA grant CCR 8996102

!Department of Information and Computer Science, University of California, Irvine, CA 92715
2TRW, One Space Park, Redondo Beach, CA 90278

Form Approved

Report Documentation Page OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display acurrently valid OMB control number.

1. REPORT DATE 3. DATES COVERED
JUN 1990 2. REPORT TYPE 00-00-1990 to 00-00-1990
4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

Q: A Multi-lingual Inter process Communications System for Software
Environment I mplementation

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
University of Colorado at Boulder ,Department of Computer REPORT NUMBER
Science,Boulder,C0,80309

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’'S ACRONYM(S)
11. SPONSOR/MONITOR’ S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF 18. NUMBER 19a. NAME OF

ABSTRACT OF PAGES RESPONSIBLE PERSON
a REPORT b. ABSTRACT c. THISPAGE 22
unclassified unclassified unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Abstract

Q is a set of matched C and Ada interfaces designed to support interprocess com-
munication between these two languages. It is a first step toward a more general
notion of a multi-lingual interprocess communication model. The @ interfaces are
adapted from the remote procedure call interface model. The need for modification
was imposed by the unavailability of certain C language features in the Ada lan-
guage. Q attempts to define an interprocess communication model common to both
languages, and a type space common to both languages.

1 Introduction

Background

Large systems often need to be able to pass typed objects between seperate sub-
components written in different languages. For example, the Rebus system in the
Arcadia environment project [8] uses an Ada process which interacts with the user,
and a C process which provides database services. The Ada and C processes must
communicate by passing typed objects back and forth. The same need has arisen
in the case of a user interface front end that interacts with a database back end.
Due to differences in debuggers, run-time systems, and difficulties in managing the
complex system as a single process, the front end was seperated into one Ada based
process, and the back end into a different database process.

In the separate process architecture, there is a need to pass typed objects be-
tween the two processes. The Unix inter-process communications capability —
XDR/RPC? — provides a limited way to do this. XDR and RPC were designed to
allow one process to make a procedure call to another process — independently of
the different computer architecture the other process lived in — and have XDR/RPC
handle the details of inter-process communication.

However, XDR/RPC only supports procedure calls between two processes writ-
ten in the C language. Hence its interfaces are written in C and make use of semantic
constructs which are not supported in Ada (such as procedure variables). Addition-
ally, objects do not migrate between different type systems as they do when they
are passed between an Ada and a C process. XDR does not deal with issues relating
to consistency of types in the different type models.

As a temporary solution to these problems, we developed a primitive Ada inter-
face to the Unix XDR/RPC services. This interface implements a slightly different
model of communication than the Unix XDR/RPC model, mainly because of the
lack of procedure variables in Ada. To use this interface for communication between
Ada processes one need only understand the interface specifications. However, when
it is used to communicate between Ada and C processes, detailed knowledge of the
implementation is required. No analogous C interface had been constructed, so the
standard Unix RPC/XDR interfaces had to be used. Although the differences be-
tween the Ada and C interprocess communication models were minor, they were
subtle and confusing to users.

3eXternal Data Representation/Remote Procedure Call

Q

Q addresses these difficulties in using by providing a C interface which is directly
analogous to our Ada interface, and simpler than the standard XDR/RPC interface.
We call these new interfaces QDR and QPC. Additionally, several simplifications of
our Ada interface were made, mainly to remove lower level RPC services?.

This paper is a description of the) system. It includes:

e a discussion of work related to Q being done at CMU and MIT,

a discussion of the current implementation’s inter-process communications

model and its derivation from the Unix XDR/RPC model,

a specification of the current () software implementation,

a discussion of relevant experience using @, and

the long term goals of) and the limited scope of Q) activities as described
herein,

2 Related Work

Our model of interprocess communication is derived from the remote procedure call
model [2]. We have adapted this model for use in a multi-typespace environment.
In doing so we have identified a common type model that represents an intersec-
tion between the C and Ada languages which we utilize as the foundation for data
exchange between these languages. Similar work in this area has been done at
Carnegie Mellon University with the Matchmaker language [5], designed to support
the construction of multi-lingual interprocess communication interfaces, and at the
Massachusetts Institute of Technology in the form of a value transmission method
for abstract data types [4].

Matchmaker is a language for specifying and automating the generation of multi-
lingual interprocess communication interfaces. When supported by the capability-
based interprocess communications found in the Mach kernel [1] it provides a het-
erogeneous, distributed, object-oriented programming environment. Currently the
Mach/Matchmaker system supports interface generation for the C, Common Lisp,

4The standard Unix RPC library provides several levels of client services. This allows the
communications protocol to be precisely controlled, if so desired, by using low level services. In
the long term, Q will most likely support the same multiple levels of services the Unix RPC services
provide, or more sophisticated services.

Ada, and Pascal languages. The Matchmaker language defines the type model with-
in which the supported languages may exchange data objects. This type model is
similar to that loosely defined by the Q interfaces. From a Matchmaker interface
specification, which includes both the object type declarations as well as the inter-
face function specifications, the system is capable of automatically generating both
client and server interfaces for any of the supported languages.

The automatic generation of the client and server interfaces represents a signifi-
cant advantage over the Q system. However, the use of this technique also introduces
a certain amount of inflexibility into the system as well. By providing the building
blocks for type encoding, Q) allows users to pass quite sophisticated objects between
client and server.® Matchmaker only supports a single level of pointer dereference
for example. The servers generated by the Matchmaker system also suffer from in-
flexibility. Matchmaker supports only a single, object-oriented, client/server model
of communication. The notion of an active server is unknown in the Matchmaker
system, while in Q this notion is supported specifically for the Ada language where
modeling the server as a task seems natural.

The work done at MIT on a value transmission method for abstract data types is
designed to support communicating abstract data types between regions of a system
using different data value representations. This method defines call-by-value seman-
tics for communicating values over a network of different computers. A canonical
representation for each type used in communications is defined. Each implementa-
tion of the type must define a translation between its internal representation and
the canonical representation. Automated support is provided to construct language
interfaces from the canonical type specifications and interface specifications. Cur-
rently only the C and Lisp languages are supported.

As with Matchmaker; the notion of an external type representation being used
to accomplish the automatic generation of interprocess communication interfaces
forms the core of the system. Although the system currently only supports com-
munications within a single language space (i.e. only C-to-C and Lisp-to-Lisp) it is
clear that the techniques are applicable to inter-language communication. However,
this method appears to suffer from the same inflexibility as the CMU system. Since
the routines for translating from the source language representation to the canonical
representation are generated automatically, there is little control over this mapping.
It is unclear how mapping of sophisticated data types would achieved.

SFor example, it is possible to produce a data encode routine to pass an entire linked graph
structure (such as a binary tree) between client and server.

3 The Q Implementation

The @Q communications model is derived from Sun’s eXternal Data Representation
(XDR) standard [6] and their Remote Procedure Call (RPC) protocol [7]. The exist-
ing implementation of XDR is designed for use with the C programming language,
offering support for the standard C base data types. The existing implementation of
RPC is also designed for use with the C programming language, utilizing standard
C call semantics, and is also restricted in its implementation to versions of Unix
with IPC sockets available. The communications semantics for Q were abstracted
from these models for use between the Ada and C languages. The Q implementa-
tions, QDR and QPC, are intended to provide communications between Ada and C
programs, including support for the transfer of objects built from Ada and C base

types.

The Model

The communications model was derived from Sun’s Remote Procedure Call protocol
specification. As the name suggests, this model is based on the concept of emulat-
ing procedure calls across process (and processor) boundaries. Although the actual
communication is achieved via a message passing subsystem, the RPC layers ab-
stract this into a procedure call interface. The system uses a client/server model to
achieve procedure call-like semantics. A client process initiates a remote procedure
call which is then “serviced” by a specified server process. The server process need
not reside on the same processor.

In order to successfully communicate data types between differing machine ar-
chitectures the RPC model is combined with the XDR protocol. The XDR protocol
defines data encodings for a set of base types as well as the ability to build up the
base types into more sophisticated abstract data types. Before transmitting the
procedure call data from the client to the server (or vice versa) the data is first en-
coded using XDR and then decoded on the receiving side, thus ensuring data type
integrity.

It is considered the responsibility of all type implementors to provide encode/decode
functions for types to be used in interprocess communication. Private types without
provided encapsulation functions can be arbitrarily encoded as opaque data — but
this implies that the data cannot be interpreted on the receiving side of the com-
munication and that instances may even be incompletely represented. For example,
private data types involving complex structure (i.e. pointers) cannot be properly
encoded/decoded as opaque data.

The RPC model

Server side: FEach server procedure (service) is “registered” with a procedure
number, argument list, and encode/decode routines for each argument. Addition-
ally, the server process itself is registered on the machine it is running on with a
process identifier (program number).

When a server receives a service request it (1) decodes the argument list using
the routines defined during registration, (2) invokes the procedure, (3) encodes re-
turn arguments, and (4) returns a message to the client process with the encoded
argument list.

The RPC mechanism automatically applies the encode/decode routines which
were provided during registration of the server procedures.

Client side: Remote procedures are invoked via a special function called callrpc.
This function takes a variable number of arguments: the machine name and pro-
gram number, remote procedure number, the argument list, and the procedures to
encode/decode the argument list. It is the sole responsibility of the persons coding
the client and server to ensure that the encode/decode routines registered with the
server are compatible with those provided during a callrpc function call.

Upon invocation of this function the argument list is encoded, and a message is
sent to the server with the encoded argument list. Upon receipt of a response mes-
sage the return argument list is decoded and control is returned from the function.

As with the server process, the RPC mechanism automatically applies the en-
code/decode routines to the arguments.

The QPC model

Ada’s refusal to accept variable length procedure argument lists and procedure pa-
rameters make the standard model for remote procedure calling impossible to imple-
ment. Hence the communications model has been modified to accommodate Ada’s
restrictions.

Server side: Instead of registering multiple service procedures, only a single ser-
vice dispatch procedure is registered. A “service type” argument is provided to this
procedure to distinguish service requests. The service dispatch procedure can then
call an appropriate local procedure to handle the particular service being requested.

The service arguments are also passed in a different manner than in the stan-
dard model. Only a single “argument” is passed — a QDR buffer. This buffer must

then be explicitly unpacked by the server — the buffer may contain multiple argu-
ments that can differ according to the type of service being requested. Each service
procedure unpacks the buffer as appropriate for the arguments to that procedure.

Client side: For the reasons just stated for the server, the client side must ex-
plicitly encode and pack its arguments into a QDR argument buffer before invoking
the callrpc special function.

As with the standard model, it is the sole responsibility of the persons coding
the client and server to ensure that the arguments in the QDR buffer are consistent
between the client and server.

Convention Orientation of Q

One way of viewing Q) is that it supports the ability to take objects from some type
schema, defined via a type model, and pass those objects into a “pipeline”. The
objects are subsequently removed from the pipeline, and placed in a new schema,
defined via a (potentially) new type model. Examples of type models are those
provided by C and Ada; an example of a type schema is a set of types defined by
type declarations in a particular C or Ada program.

There are two extreme approaches that can be taken in supporting the migration
of objects between these two type schemas. One is to provide mechanisms for
defining a unifying type model, and a means for automatically migrating objects
between type schemas which have been defined in terms of that type model, or in
models which are unified by that type model. It would then be the responsibility of
the Q system to automatically ensure that the objects are placed in the destination
schema in a manner consistent with their position in the originating schema.

The other extreme is to provide low level capabilities for placing objects into
the pipeline, and for removing them from the pipeline. It is then the responsibility
of the people writing applications to agree upon conventions for passing objects
through the pipeline such that their positions in the originating and destination
type schemas are consistent.

The second, convention oriented, approach is the one that this version of Q takes.

The Implementation

The overall structure of Q is shown in Figure 1.
QDR is separate from QPC because it is sometimes desirable for a system to
pack and unpack data without passing it to another process via QPC. Hence the

Q Types, Objects and Roulines
Common fo QDR and QPC

and Decoding Objecls

'Q D R Routines for Encoding) 1

4)

Q PC Types, Objects and Routines

Common lo Clients and Servers

AN

[QPCWSVC swm"mes] [qpc_clnt amad.i.m]

Figure 1: The Q system architecture

QDR routines are “stand alone”. However, QPC relies on the QDR routines, and
hence anyone who uses QPC will need to understand QDR.

The Q Interface

The top level interface to Q defines types and objects which are necessary for use
of either QDR or QPC. A set of base types are defined here which are guaranteed
to have the following property: if an instance of a particular C or Ada type derived
from these base types is placed into a Q buffer, and then removed as another instance
of that C or Ada type, then all properties of the instance that were true prior to
its being encoded, will be true following its being decoded. Properties of interest
include

o satisfaction of Ada constraints,
e values of Ada attributes, and

e representability of value by type in C (i.e. whether or not the object’s value
is within the range of the type).

Integer, floating point and character base types are supported.

This guarantees the sizes and ranges of numbers that can be passed between
programs using Q: any Q integer (or floating point number) in Ada is guaranteed
to map to a legal Q integer (or floating point number) in C, and vice versa, and a
C character is guaranteed to map properly to an Ada character.

These types define the base types that are guaranteed to be handled properly.
Any types which

e can in C be safely cast into these types, and then back again, and
o in Ada are subtypes of these types or are derived from these types

can be safely passed between programs via Q.

The QDR Interface

The QDR interface provides routines which encode and decode base data types in
the C and Ada languages. Encoded data values are stored as a linearization in a
buffer which is referred to, in the implementation, as a handle. These buffers are
used as arguments to the other QDR routines, which pack and unpack data to and
from a buffer. The buffers are also passed between clients and servers in the QPC
model — hence the buffers are also used as arguments to various QPC routines.

The QDR interface routines are symmetric. Each routine is capable of acting
as both a value encoder and value decoder. Therefore, the calls required to encode
a set of data items is identical to the set of calls necessary to decode it. New
encode/decode routines for aggregate types built from the QDR supported base
types will in general retain this symmetric property. Figure 2 gives an example of
such a user-defined routine.

Although, of necessity, there are differences between the QDR interface specifi-
cations for C and Ada, there exists a well-defined mapping between the interface
routines. Mapped pairs of routines define the set of types which are “consistent”
between the Ada and C languages. When passing data between C and Ada pro-
cesses, data which is packed using a member of a paired set may be unpacked by a
member of that paired set. See Figure 3 for the defined mapping.

Most of the QDR procedures are self-explanatory. The procedure bool, for ex-
ample, packs and unpacks a Boolean value into the supplied buffer. Some, however,
require more detail. This detail follows.

Ada Fixed Point Types: C has no type which is analogous to the Ada fixed
point types. Nevertheless, one may wish to to pass fixed point objects to other Ada
programs, or to C programs simply for storage. For this reason, there is a routine
on the Ada side for encoding fixed point typed objects. C routines cannot decode
these objects, so they should be passed in linearized buffers that are not decoded
on the C side.

Ada Private Types: We do not provide any means for encoding objects which
are Ada private. We believe that the implementation of the private type contains

TYPE TestType IS RECORD

int_field : Integer;
float_field : Float;
fixed_field : Money;
bool_field : Boolean;
slice_field : String(1..10);
string_field : String_ref;
END RECORD;

PROCEDURE qdr_testtype (

qdrs : IN QDR.Handle;
s : IN OUT TestType
) IS

PROCEDURE qdr_integer IS NEW
generic_integer (Integer);
PROCEDURE qdr_float IS NEW
generic_floating (Float);
PROCEDURE qdr_fixed IS NEW
generic_fixed (Money);
BEGIN
qdr_integer (qdrs, s.int_field);
qdr_float (qdrs, s.float_field);
qdr_fixed (qdrs, s.fixed_field);
bool (qdrs, s.bool_field);
string_slice (qdrs, s.slice_field);
strings (qdrs, s.string_field);
END qdr_testtype;

Figure 2: Example QDR encode/decode routine

Ada procedure C function
QDR.generic_integer gdr_integer
QDR.genericfloating qdr_floating
QDR.genericfixed qdr_bytes
QDR.generic_enumeration | qdr_integer
QDR .bool qdr_bool
QDR.strings or qdr_string or
QDR.string slice qdr_bytes
QDR.generic_pointer qdr_pointer
QDR .generic_array qdr_array

Figure 3: QDR interface routine mapping

semantic information which is necessary for successfully defining the meaning of en-
coding objects of that type, and building the routine to do so. For example, a private
type named stack might simply be a pointer to a linked list of stack elements. In a
proper abstraction, only the implementation would have the information necessary
to encode the whole stack, and define exactly what it means to do so. Providing a
QDR routine to encode a stack object would simply encode the pointer variable —
while the user could believe they were encoding the whole stack.

Enumeration Types Within the C language, enumeration types are represented
as integers. The Ada routine for enumeration objects is therefore designed to be
compatible with the C integer routine. The value encoded is the integer value
returned by Ada’s T’P0S operation for the specific enumeration type [9].

Strings It should be noted that while there are several different interface routines
defined for the string type in both the C and Ada interfaces, they all utilize the same
underlying data encoding technique. They have been provided for user convenience
and are all compatible and interchangeable.

The QPC Interface

Again, the C and Ada interfaces are paired, with semantically equivalent routines in
each interface pair. Systems that use QPC have two types of processes: servers and
clients. Servers define and register procedures for handling client calls, utilizing the
server interface. Clients call server procedures that have been registered, using the

10

TYPE Service_ID IS (PING, INC);

PROCEDURE service (

id : IN Service_ID;
argblk : IN QDR.Handle;
result : IN QDR.Handle
) IS

PROCEDURE qdr_integer IS NEW
QDR.generic_integer (Integer) ;
value : Integer;
BEGIN
IF id = INC THEN
qdr_integer (argblk, value);
value := value + 1;
qdr_integer (result, value);
END IF;
END service;

Figure 4: Example service dispatch routine

client interface. A process may be both a server and a client, in which case it uses
both interfaces. Finally, since parameters to server procedures must be encoded and
decoded using QDR, both servers and clients use the QDR interface.

The Server: Servers are created by defining a dispatch procedure that will process
QPC calls for a particular set of services, and then registering it. Figure 4 presents
an example service dispatch routine. The intention is that any one process should
be registered under only one program number at any one time, and hence may not
function simultaneously as different servers. Hence an Ada program with several
tasks, for example, should not have separate tasks acting as different servers. Figure
5 presents an example server which registers the dispatch routine from figure 4.

The Client: The client specifies a server (via a machine, version, and server id),
the type of service requested, (simply an id which can be used by the server to
discriminate between requests when one server provides several services), and a
QDR buffer which contains packed parameters. On return, this buffer contains
results which the server placed in the second, results, buffer. As was mentioned
above, it is the responsibility of the system designers to ensure that the type and

11

WITH QDR;
WITH QPC;
WITH QPC_SVC;

PROCEDURE server IS

PACKAGE ThisService IS NEW
QPC_SVC(QPC.program_number (1),
QPC.DEFAULT_VERSION,
Service_ID, service);
BEGIN
Put_Line ("Starting server...");
ThisService.SVC_TASK.svc_start;
Put ("Started - return to terminate: ");
Get_Line (input, last);
Put_Line ("Terminating server");
ThisService.SVC_TASK.svc_stop;
ThisService.SVC_TASK.svc_terminate;
END server;

Figure 5: Example server

12

order of data in the buffer on call and return are consistent with those expected by
the server. Figure 6 presents an example client process.

4 FExperience with Q

To date Q has played a major part in two significant software projects. It is sup-
porting the interprocess communication needs of the Arcadia Chiron project [14, 3].
Chiron is a user interface management system developed to support the UIMS needs
of the Arcadia environment. It relies heavily on the notion of separating the appli-
cation program from the display process in a client/server split. Q is also supporting
the use of interprocess communication in the Triton data management system. Tri-
ton is a highly extensible and flexible database management system being developed
to compliment the PGRAPHITE [10], PIC [13], and SLI [12] systems to support
many of the Arcadia persistent and shared data management requirements. It also
relies on a client/server split between the application program and the database
management process.

Chiron

Q is being used in the development of Chiron-1 because of its ability to cleanly
separate conceptual boundaries thus preventing unwanted compiler dependencies,
its ability to dynamically add and interact with new software modules, and its
ability to describe arbitrary data structures in a language independent (between C
and Ada) fashion.

The separation of concerns between the application domain (model) and the
presentation domain (view) in Chiron-1 require a sharp split between a Chiron
Client (application) and a Chiron Server (presentation). Separating the server code
from the client code reduces the size and complexity of client applications. This also
allows modifications to be made without having to recompile both modules. Because
Q allows the server process to reside on a separate processor from the client process,
Chiron’s flexibility, portability, and efficiency are all increased. The client and server
rely heavily upon Q) to link and maintain interprocess communication between the
Client Protocol and Server Protocol Managers which are the gateways between the
two modules.

Because of the Client/Server split, Chiron needs to send various Ada structures
using Q protocols. Chiron uses the QDR functions to encode and decode the classes
and Ada records which are passed between the client and server. QDR functions are
also useful in other areas where communication between different languages might
corrupt the data. For example, in Chiron’s mapper, where events from the server

13

WITH QDR;

WITH QPC;

WITH QPC_CLNT;

WITH Text_IO; USE Text_I0;

PROCEDURE client IS

value : Integer := 3;
wagram : QPC_CLNT.Svc_server;

TYPE Services IS (Ping,Inc);
PROCEDURE qdr_integer IS NEW
QDR.generic_integer (Integer);
PROCEDURE qpc_call IS NEW
QPC_CLNT.call (Services);

BEGIN
wagram := QPC_CLNT.establish
("wagram", QPC.program_number(1));
Put_Line ("Value before: " &
Integer’ IMAGE(value));
QDR.set_write (QPC.Handle);
qdr_integer (QPC.Handle, value);
gpc.call (wagram, Inc);
QDR.set_read (QPC.Handle);
qdr_integer (QPC.HANDLE, value);
Put_Line ("Value after: " &

Integer’ IMAGE(value));
END client;

Figure 6: Example client

14

are mapped to procedures in the client, QDR functions are used to encode and
decode the parameters which will be used when the Ada procedure’s address is de-
referenced in C. The QDR functions prevent the corruption of the data passed from
server to client and then from Ada to C and finally back to Ada.

Triton

Triton utilizes Q to handle interprocess communication needs. Triton is designed
to provide object management capabilities to a wide variety of tools and processes
that will populate the Arcadia environment. Triton will provide dynamic binding
of types that may be shared among processes and will provide persistent storage of
instances of those types. Because of the diverse nature of the tools and processes
within the Arcadia environment, there is a need for a general mechanism for handling
communication between processes instantiated with diverse programming languages.

Abstraction of the interprocess communication capabilities helps Triton focus
on object management issues. () provides such an abstraction and fits well into the
Triton model. In Triton, we envision object management capabilities to be provided
on a serverized basis such that any process within the environment could request
services asynchronously as a client of the server. () was designed with specific sup-
port for the client/server model. A process may pass data to the Triton server by
encoding and decoding the data using the QDR data representation scheme on both
the client side and the server side of an interprocess communication channel. QPC
then transmits the data without relying on an understanding of the underlying inter-
process communication mechanisms. Since Triton will serve processes dynamically,
Q provides the ideal interface mechanism for passing data.

5 Future Work

Although Q contains relatively minor modifications and extensions to the Unix
XDR/RPC software, and is implemented almost directly on the UNIX XDR/RPC
software platform, the philosophy of () contains some significant additions to the
XDR/RPC model. It is not our intent to address these extensions in detail here,
but only to mention them briefly as long term goals of the work.

The ultimate goal of this work is a language and architecture independent inter-
process communication capability. To provide such a capability, we must first ad-
dress issues with regard to the transfer of data between differing programming lan-
guages, and hence differing type systems. This is tantamount to the quest for a
single universal type model, and is clearly a non-trivial problem. We do not intend
to address this issue here. Our means of skirting this issue was to limit our scope to

15

only provide communications capabilities for Ada and C processes®. Furthermore,
data in our system which is passed between an Ada and a C process migrate between
two type systems. Hence each object has two types, one in each process.

We only allow data to be passed between these processes when we can determine
that the two different types of the object are consistent. Consistency is defined via
a pairwise listing of Ada and C base types. Two types are consistent if they are, or
are derived from, a pair in the list. Our definition of consistent is limited in that
we have not fully unified the two type systems, but only convinced ourselves that
it seems reasonable to pass objects between each pair of types in the different type
models. The ultimate responsibility for deciding whether two types are consistent
will rest with the creator of the software that uses Q: Q will transfer objects between
the two type systems when the object’s types are a pair in the list.

The result of this limited scope is that we did not need to find a type model
which will unify programming language type models in general, and the Ada and
C type models in specific. We believe, however, that later versions of Q must
provide strongly typed communications where consistency is rigorously defined and
automatically verified.

Another thorny issue (which we likewise sidestep) crops up when we consider
what it means to take an object from a process and store it elsewhere for some
duration, change the state of the process, and then re-introduce the object into the
process. The exact meaning of an object (i.e. its value) may well be dependent on
the state of the process; hence its value may implicitly change as the state of the
process changes.

As an example of such an object consider a stack. If a stack is defined as an Ada
private type, then we have at least two possibilities when we take a stack object
from a process and then return it at a later time. First, the object could contain
all of the stack values, and returning it to the process would return the stack in its
original state. Second, the stack could be a reference to the stack values. Assuming
that this reference is valid on return to the process, we will get whatever values the
referred-to stack has on return. If there were aliases to the referred-to stack, and
those aliases were used to push or pop the stack, then the value of the saved stack
may be different upon its return. A more extreme example occurs when an object
persists past the life of the process that created it. In this version of Q, we simply
ignored this issue. We expect people who create software using Q to ensure to their
own satisfaction that their system behaves in a reasonable manner. Clearly we must
address these issues in future elaborations upon this work.

fIe. Ada—Ada, C—~C, Ada—C

16

6 Conclusions

Q represents the first step toward a more general muti-lingual interprocess com-
munication model. Through Q we have investigated, in a microcosm of the C and
Ada languages, the difficulty involved in attempting to unify diverse type models
and identify a communications paradigm applicable to a variety of language mod-
els. Q has also turned out to be surprisingly useful. The fact that its ability to
facilitate communications between C and Ada processes was immediately utilized
by several projects implies that a more general multi-lingual facility may be even
more desirable and useful.

Although) does not explicitly define a unified type model for interprocess com-
munication, it does identify implicitly a type model intersection between the C and
Ada languages. Through an explicit set of mapped type encoding/decoding proce-
dures, Q provides a base upon which typed objects may be exchanged meaningfully
between these two languages. Work on the development of a more general unified
type model is currently underway as part of the Arcadia project [11]. We hope to
introduce this model as the intermediate representation for types in the Q system,
thereby reducing the n? problem of identifying the type intersection of n languages
to a n problem of defining the mapping between each language type system and the
unified type model.

Although the remote procedure call model is a natural model for most computer
languages, it is not always straightforward to implement in an arbitrary languages.
The remote procedure call model tends to impose an object-oriented flavor to the
resulting IPC interfaces. For most procedural languages and particularly for object-
oriented languages this is extremely useful. Q attempts to retain this basic model
while adapting itself to the limitations and peculiarities of arbitrary languages. We
hope to broaden Q’s ability to deal with arbitrary languages by expanding on the
current fixed remote procedure call model to include general message passing and
broadcast models of communication.

The Q implementation has proven to be immediately useful. Its desirability as
a key component in several large software projects has demonstrated the need for
such a facility in the software community. As software systems grow in complexity
and as computational power continues to be distributed in larger and more diverse
networks, the importance of being able to distribute the system as a set of com-
municating processes increases. Often individual components of the system will be
best implemented in diverse languages. A general mechanism which will allow these
components to communicate at a meaningful level of type abstraction would clearly
be of tremendous use.

17

Acknowledgments

We would like to thank Greg Bolcer of the Chiron development team and Harry
Yessayan of the Triton development team for their contributions. Their patience in
endeavoring to use a new system and their invaluable feedback is appreciated. We
would also like to acknowledge Dennis Heimbigner who had tremendous influence
on the development of the) system.

References

[

M. Accetta, R. Baron, D. Golub, R. Rashid, A. Tevanian, and M. Young. Mach:
A new kernel foundation for unix development. In Procedings of the Summer
1986 USENIX Technical Conference and Ezhibition, June 1986.

A. D. Birrell and B. J. Nelson. Implementing remote procedure calls. Technical
Report CSL-83-7, XEROX, October 1983.

Gregory Alan Bolcer, Mary Cameron, M. Gregory James, Rudolf K. Keller,
Richard N. Taylor, and Dennis B. Troup. Chiron-1: Concept and design. Ar-
cadia Technical Report UCI-89-12, University of California, Irvine, October
1989.

M. Herlihy and B. H. Liskov. A value transmission method for abstract data

types. ACM Transactions on Programming Languages and Systems, 4(4):527-
551, October 1982.

Michael B. Jones and Richard F. Rashid. Mach and matchmaker: Kernel and
language support for object-oriented distributed systems. Technical Report
CMU-CS-87-150, Carnegie Mellon University, September 1986.

Sun Microsystems. XDR: External data representation standard. Technical
Report RFC-1014, Sun Microsystems, Inc., June 1987.

Sun Microsystems. RPC: Remote procedure call protocol specification. Tech-
nical Report RFC-1057, Sun Microsystems, Inc., June 1988.

Richard N. Taylor, Lori Clarke, Leon J. Osterweil, Jack C. Wileden, and Michal
Young. Arcadia: A software development environment research project. In
Proceedings of the IEEE Computer Society Second International Conference

on Ada Applications and Environments, pages 137-149, Miami, Florida, April
1986.

18

[9]

[10]

[13]

[14]

United States Department of Defense. Reference Manual for the Ada Program-
ming Language, 1983. ANSI/MIL-STD-1815A-1983.

Jack C. Wileden, Alexander L. Wolf, Charles D. Fisher, and Peri L. Tarr.
PGRAPHITE: An experiment in persistent typed object management. In Pro-
ceedings of ACM SIGSOFT ’88: Third Symposium on Software Development
Environments, pages 130-142, Boston, November 1988.

Jack C. Wileden, Alexander L. Wolf, William R. Rosenblatt, and Peri L. Tarr.
UTM-0: Initial proposal for a unified type model for arcadia environments.
Arcadia Technical Report UM-89-01, University of Massachusetts, Amherst,
1989.

Jack C. Wileden, Alexander L. Wolf, William R. Rosenblatt, and Peri L. Tarr.
Specification level interoperability. In Proceedings of the Twelfth International
Conference on Software Engineering, Nice, March 1990. To appear.

Alexander L. Wolf, Lori A. Clarke, and Jack C. Wileden. Ada-based support
for programming-in-the-large. IEEE Software, 2(2):58-71, March 1985.

Michal Young, Richard N. Taylor, and Dennis B. Troup. Software environ-
ment architectures and user interface facilities. IEEE Transactions on Software
Engineering, June 1988.

19

